The theory and practice of **PERFORMANCE-BASED DESIGN** THE FUTURE OF EARTHQUAKE ENGINEERING

Ashraf Habibullah President and CEO, Computers & Structures, Inc.

ANOTHER BREAKTHROUGH FROM

5-Figure Computing Power at a 4-Figure Price/

Complete Subsected South St.

Control & Mathematican Society of State Society of State 1988 Automatican According Mathematica Plant and Economications

Support of the second s

ENERGY DIAGRAM

TE

an

ENERGY DIAGRAM w/ HYSTERETIC

PUTE

IMPLIED NONLINEAR BEHAVIOR

ND

TECHIZOTOGY FOR A BETTER

HYSTERETIC BEHAVIOR

EX.

MOMENT ROTATION RELATIONSHIP

ONDITER

TECHNOLOGY FOR A BETTER

U

CAPACITY DESIGN

- STRONG COLUMNS & WEAK BEAMS IN FRAMES
- REDUCED BEAM SECTIONS
- LINK BEAMS IN ECCENTRICALLY BRACED FRAMES
- BUCKLING RESISTANT BRACES AS FUSES
- RUBBER-LEAD BASE ISOLATORS
- HINGED BRIDGE COLUMNS
- HINGES AT THE BASE LEVEL OF SHEAR WALLS
- ROCKING FOUNDATIONS
- OVERDESIGNED COUPLING BEAMS
- OTHER SACRIFICIAL ELEMENTS

FOR A BE

PERFORMANCE LEVELS

-

PERFORMANCE LEVELS

IDEALIZED FORCE DEFORMATION CURVE

ASCE 41 BEAM MODEL

Performance assessment : Bending behavior is ductile. Use hinge rotation D/C ratio.

ASCE 41 MOMENT HINGE

Point	Moment/SE	Potation/SE		
FUIIL	0.2	e e	· · · · · ·	-
D-	-0.2	-0		
C-	-1.12	-4		
B-	-1	0		1
А	0	0	┟╴┟╌╌┥	+
В	1	0		1
С	1.12	4	Symmetric	
D	0.2	4		
E	0.2	6		
ad Carryin Drops Is Extra	0.2 g Capacity Beyond Point E To Zero apolated	6		
ad Carryin Drops Is Extra aling for M	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation	Positive	Negative	
ad Carryin Drops Is Extra aling for M Use Yi	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF	6 Positive 1397.9167	Negative 1397.9167	kip-ft
ad Carryin Drops Is Extra aling for M Use Yi Use Yi	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF eld Rotation Rotation SF	6 Positive 1397.9167 0.00767	Negative 1397.9167 0.00767) kip-ft
ad Carryin Drops Is Extra aling for M Use Yi (Steel	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF eld Rotation Rotation SF Objects Only)	6 Positive 1397.9167 0.00767	Negative 1397.9167 0.00767] kip-ft
ad Carryin Drops Is Extra aling for M Use Yi Use Yi (Steel ceptance	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF eld Rotation Rotation SF Objects Only) Criteria (Plastic Rotation/SF)	6 Positive 1397.9167 0.00767	Negative 1397.9167 0.00767] kip-ft
ad Carryin Drops Is Extra aling for M Use Yi Use Yi (Steel ceptance	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF eld Rotation Rotation SF Objects Only) Criteria (Plastic Rotation/SF)	6 Positive 1397.9167 0.00767 Positive	Negative 1397.9167 0.00767 Negative 0.25	kip-ft
ad Carryin Drops Is Extra aling for M Use Yi Use Yi (Steel ceptance Imm	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF eld Rotation Rotation SF Objects Only) Criteria (Plastic Rotation/SF) ediate Occupancy	6 Positive 1397.9167 0.00767 Positive 0.25	Negative 1397.9167 0.00767 Negative -0.25	kip-ft
d Carryin Drops Is Extra ling for M Use Yi (Steel ceptance	0.2 g Capacity Beyond Point E To Zero apolated oment and Rotation eld Moment Moment SF eld Rotation Rotation SF Objects Only) Criteria (Plastic Rotation/SF) ediate Occupancy Safety	6 Positive 1397.9167 0.00767 Positive 0.25 2	Negative 1397.9167 0.00767 -0.25 -2] kip-ft

STRENGTH vs. DEFORMATION

ELASTIC STRENGTH DESIGN - KEY STEPS

FORABE

CHOSE DESIGN CODE AND EARTHQUAKE LOADS DESIGN CHECK PARAMETERS STRESS/BEAM MOMENT GET ALLOWABLE STRESSES/ULTIMATE- PHI FACTORS CALCULATE STRESSES - LOAD FACTORS (ST RS TH) CALCULATE STRESS RATIOS

INELASTIC DEFORMATION BASED DESIGN -- KEY STEPS

CHOSE PERFORMANCE LEVEL AND DESIGN LOADS – ASCE 41 DEMAND CAPACITY MEASURES – DRIFT/HINGE ROTATION/SHEAR GET DEFORMATION AND FORCE CAPACITIES CALCULATE DEFORMATION AND FORCE DEMANDS (RS OR TH) CALCULATE D/C RATIOS – LIMIT STATES

ASCE 41 ASSESSMENT OPTIONS

- Linear Static Analysis
- Linear Dynamic Analysis (Response Spectrum or Time History Analysis)
- Nonlinear Static Analysis (Pushover Analysis)
- Nonlinear Dynamic Time History Analysis (NDI or FNA)

PERFORMANCE PARAMETERS

BRIDGE CATEGORIES

LIFELINE BRIDGES

MAJOR-ROUTE BRIDGES

OTHER BRIDGES

PERFORMANCE LEVELS

GROUND MOTION LEVELS

U

-

TECHIZOLOGY FOR A BET

SERVICE	DAMAGE	PROBABILITY IN 50 YEARS	RETURN PERIOD
IMMEDIATE	MINIMAL DAMAGE	10%	475 YEARS
LIMITED	REPAIRABLE DAMAGE	5%	975 YEARS
ERVICE DISRUPTION	EXTENSIVE DAMAGE	2%	2475 YEARS
LIFE SAFETY	PROBABLE REPLACEMENT		

STRUCTURAL COMPONENTS

F-D RELATIONSHIP

Component Force Versus Deformation Curves

FORCE AND DEFORMATION CONTROL

Table C2.1

	Deformation-Controlled and Force-Controlled Actions				
Component	Deformation- Controlled Action	Force- Controlled Action			
Moment Frames • Beams • Columns • Joints	Moment (M) M 	Shear (V) Axial load (P), V V ¹			
Shear Walls	M, V	Р			
Braced Frames • Braces • Beams • Columns • Shear Link	P V	 P P P, M			
Connections	P, V, M ³	P, V, M			
Diaphragms	M, V ²	P, V, M			

Examples of Possible

FECHILOTOGY FOR A BETTER

-

BACKBONE CURVE

HYSTERESIS LOOP MODELS

APUTER

STRENGTH AND DEGRADATION

ASCE 41 DEFORMATION CAPACITIES

THE OTOGY FOR A BETH

- This can be used for components of all types.
- It can be used if experimental results are available.
- ASCE 41 gives capacities for many different components.

PLASTIC HINGE MODEL

- It is assumed that all inelastic deformation is concentrated in zero-length plastic hinges.
- The deformation measure for D/C is hinge rotation.

ASCE 41 ROTATION CAPACITIES

177

CHILOTOGY FOR A BETT

- This can be used for components of all types.
- It can be used if experimental results are available.
- ASCE 41 gives capacities for many different components. .

CONCRETE COLUMN AXIAL-BENDING

FEMA PMM HINGE

elect Cu	rve		
Axial For	-564.354	~	Angle 0 • Curve #33
oment R	otation Data for Selected	Curve	
Point	Moment/Yield Mom	Rotation/SF	
А	0	0	
В	1	0	
С	1.12	4.283858	
D	0.2	4.283858	
E	0.2	6.425788	
lote: Yi	eld moment is defined by	interaction surface	
Cop	y Curve Data	Paste Curve Data	- R3 [−] R2
			Current Curve - Curve #33 3-D Surface
Accent	tance Criteria (Plastic Def	formation (SE)	Force #3; Angle #1 Axial Force = -564.354 kip
, accopt	anos oniona (nastio Del		
	Immediate Occupancy	0.267741	Plan 315 deg Axial Force -504.354 kip
	Life Safety	2.141929	Elevation 35 deg Hide Backbone Lines
	O-llana Danatia	2 242904	Show Acceptance Criteria
	Collapse Prevention	3.212694	Aperture o deg Show Thickened Lines
Sh	low Acceptance Points of	n Current Curve	3D RR MR3 MR2 Highlight Current Curve
	otation Information		Angle Is Moment About
oment R	Candillian	None	0 degrees = About Positive M2 Axis
oment R Symmetr	y Condition	2	90 degrees = About Positive M3 Axis OK
oment R Symmetr Jumber (y condition of Axial Force Values	3	
oment R Symmetr lumber (lumber (y Condition of Axial Force Values of Angles	5 16	180 degrees = About Negative M2 Axis

CONCRETE COLUMN FIBER HINGE MODEL

Reinforced Concrete Column

Confined Concrete Fibers

Steel Rebar Fibers

Unconfined Concrete Fibers
SHEAR WALL FIBER HINGE MODEL

Reinforcement Layout

Steel Fibers

Confined Concrete Fibers

Unconfined Concrete Fibers

MATERIAL STRESS-STRAIN CURVES

Unconfined and Confined Concrete (Compared)

Confined Concrete

Steel

STRAIN AS PERFORMANCE MEASURE

HNO

	10GV	RETTE
Strain	Limit	RAD
Fully confined concrete compressive strain	0.015	
Unconfined concrete compressive strain	0.005	
Rebar tensile strain	0.05	
Rebar compressive strain	0.02	

PIER AND SPANDREL FIBER MODELS

Vertical axial and bending

Horizontal axial and bending

Vertical and horizontal fiber models

BRIDGE SECTIONS AND FIBER MODELS

BRIDGE CROSS SECTIONS

FIBER MODELS OF CROSS SECTIONS

SHEAR HINGE MODEL

177

PANEL ZONE ELEMENT

PANEL ZONE DEFORMATION

ANALYSIS MODEL

No.

NONLINEAR SOLUTION SCHEMES

THE POWER OF RITZ VECTORS

APPROXIMATELY THREE TIMES FASTER THAN THE CALCULATION OF EXACT EIGENVECTORS

FOR

IMPROVED ACCURACY WITH A SMALLER NUMBER OF VECTORS

CAN BE USED FOR NONLINEAR ANALYSIS TO CAPTURE LOCAL RESPONSE

FAST NONLINEAR ANALYSIS (FNA)

DISCRETE NONLINEARITY

FRAME AND SHEAR WALL HINGES BASE ISOLATORS (RUBBER & FRICTION)

> STRUCTURAL DAMPERS STRUCTURAL UPLIFT

STRUCTURAL POUNDING BUCKLING RESTRAINED BRACES

RITZ VECTORS

ITE

ND O

FNA ADVANTAGES

MODAL SOLUTION - NO STIFFNESS REDUCTION CLOSED FORM SOLUTION – VERY FAST

FORABE

TIME STEP INDEPENDENT CAPTURES HIGH FREQUENCY RESPONSE

RITZ VECTORS CALCULATED ONCE MULTIPLE TIME HISTORIES ARE FAST

FNA KEY POINT

The Ritz modes generated by the nonlinear deformation loads are used to modify the basic structural modes whenever the nonlinear elements go nonlinear. FOR

DYNAMIC EQUILIBRIUM EQUATIONS Μ Mü_. + C i + Ku 0 Mü + Cù + Ku Mü Κ $\mathbf{\dot{u}} + 2\xi\omega\dot{\mathbf{u}} + \omega^2\mathbf{u}$ g

OGY FOR A BE

RESPONSE FROM GROUND MOTION

$$\ddot{u} + 2\xi\omega\dot{u} + \omega^2 u = A + Bt = -\ddot{u}_g$$

CLOSED FORM DAMPED RESPONSE

$$\dot{u}_{t} = e^{-\frac{\xi\omega t}{\omega}} \{ [\dot{u}_{t_{1}} - \frac{B}{\omega^{2}}] \cos \omega_{d} t$$

+ $\frac{1}{\omega_{d}} [A - \omega^{2} u_{t_{1}} - \xi\omega(\dot{u}_{t_{1}} + \frac{B}{\omega^{2}})] \sin \omega_{d} t \} + \frac{B}{\omega^{2}}$
$$u_{t} = e^{-\frac{\xi\omega t}{\omega}} \{ [u_{t_{1}} - \frac{A}{\omega^{2}} + \frac{2\xi B}{\omega^{3}}] \cos \omega_{d} t$$

m

$$+ \frac{1}{\omega_{d}} \left[\dot{u}_{t_{1}} + \xi \omega u_{t_{1}} - \frac{\xi A}{\omega} + \frac{B(2\xi^{2} - 1)}{\omega^{2}} \right] \sin \omega_{d} t$$

+
$$\left[\frac{A}{\omega^2} - \frac{2xB}{\omega^3} + \frac{Bt}{\omega^2}\right]$$

UNDAMPED RESPONSE

$$u_{t} = [u_{t_{1}} - \frac{A}{\omega^{2}}]\cos \omega t$$

+ $\frac{1}{\omega}[\dot{u}_{t_{1}} - \frac{B}{\omega^{2}}]\sin \omega t + \frac{1}{\omega^{2}}(A + Bt)$
$$u_{t} = [\dot{u}_{t_{1}} - \frac{B}{\omega^{2}}]\cos \omega t$$

+ $\frac{1}{\omega}[A - \omega^{2}u_{t_{1}}]\sin \omega t + \frac{B}{\omega^{2}}$

STEP BY STEP DYNAMIC ANALYSIS

- At any point in time, dynamic equilibrium is :
 Mů + Ců + Ku = R
- Over a time step, Δt , dynamic equilibrium is : $M \Delta \mathbf{\hat{u}} + C \Delta \mathbf{\hat{u}} + K \Delta u = \Delta R$
- This equation can be solved by step-by-step methods.
- There is one equation with three unknowns (Δu , $\dot{\Delta} u$, $\dot{\Delta} u$), so assumptions must be made and the solution is approximate.

TE

STEP-BY-STEP INTEGRATION (CAA)

Equilibrium : $M \Delta \tilde{u} + C \Delta \tilde{u} + K \Delta u = \Delta R$

From Kinematics :

 $\Delta \dot{\mathbf{u}} = \frac{\Delta t}{2} (\ddot{\mathbf{u}}_0 + \ddot{\mathbf{u}}_1) = \frac{\Delta t}{2} (2\ddot{\mathbf{u}}_0 + \Delta \ddot{\mathbf{u}})$ $\Delta \mathbf{u} = \frac{\Delta t}{2} (\dot{\mathbf{u}}_0 + \dot{\mathbf{u}}_1) = \frac{\Delta t}{2} (2\dot{\mathbf{u}}_0 + \Delta \ddot{\mathbf{u}})$

Hence get effective stiffness and load :

$$K_{eff} = \frac{4}{\Delta t^2}M + \frac{2}{\Delta t}C + K$$

$$\Delta R_{eff} = -M\tilde{u}_{g} + M(2\tilde{u}_{0} + \frac{4}{\Delta t}\tilde{u}_{0}) + 2C\tilde{u}_{0}$$

Solve $K_{eff} \Delta u = \Delta R_{eff}$ Then :

$$\Delta \mathbf{u}^{*} = -2\mathbf{u}_{0}^{*} + \frac{2}{\Delta t}\Delta \mathbf{u}$$
$$\Delta \mathbf{u}^{*} = -2\mathbf{u}_{0}^{*} + \frac{2}{\Delta t}\Delta \mathbf{u}$$

BASIC DYNAMICS WITH DAMPING

$$M\ddot{u}_{t} + C\dot{u} + Ku = 0$$

$$M\ddot{u} + C\dot{u} + Ku = -M\ddot{u}_{g}$$

$$\ddot{u} + 2\xi\omega\dot{u} + \omega^{2}u = -\ddot{u}_{g}$$

MD

OR OR FOR A BETT

RESPONSE MAXIMA

$$u_t = u_0 \cos(\omega t)$$

 $\dot{u}_t = -\omega u_0 \sin(\omega t)$

$$\ddot{u}_t = -\omega^2 u_0 \cos(\omega t)$$

$$\ddot{u}_{max} = -\omega^2 u_{max}$$

RESPONSE SPECTRUM GENERATION

SPECTRAL PARAMETERS

THE ADRS SPECTRUM

Spectral Displacement, Sd

THE ADRS SPECTRUM

ND

ASCE 7 RESPONSE SPECTRUM

Spectral response acceleration, S_a

THE LINEAR PUSHOVER Z m T_L Sa OLOGY FOR A BETTER F ξ, < ξ, <ξ. 3< 54< 55< 56< 57 $a = \frac{F}{M}$ а $\frac{K}{M} = \omega^2$ $\frac{F}{\Delta} = K$ Sd a Δ Λ ADRS Spectrum Linear Pushover Diagram (In terms of acceleration) Linear Pushover Diagram (In terms of force) (With linear pushover diagram) М K2 K3 K1 K= K1+K2+K3

777

EQUIVALENT LINEARIZATION

How far to push? The Target Point!

DAMPING COEFICIENT FROM HYSTERESIS

-

DAMPING COEFICIENT FROM HYSTERESIS

 $\ddot{u} + 2\xi\omega u + \omega^{2}\dot{u} = -\ddot{u}g$ $u = d \sin \omega t$ $\dot{u} = d \omega \cos \omega t$ $f = (2\xi\omega) (d\omega)$ Area = π fd $= 2\pi\xi\omega^{2}d^{2}$

DISPLACEMENT MODFICATION

Calculating the Target Displacement

FORABE

$$\delta = C_0 C_1 C_2 S_a T_e^2 / (4\pi^2)$$

C₀ Relates spectral to roof displacement C₁ Modifier for inelastic displacement C₂ Modifier for hysteresis loop shape

ARTIFICIAL EARTHQUAKES

CREATING HISTORIES TO MATCH A SPECTRUM

FORABE

FREQUENCY CONTENTS OF EARTHQUAKES

FOURIER TRANSFORMS

MATCHING THE SPECTRUM

OMO

Seed Earthquake Record

Spectrum to be matched

FOURIER TRANSFORMS

Z

ENERGY DISSIPATION DEVICES

-

ECHI

RATING FOR SEISMIC PERFORMANCE

MA

m

GIJOGY FOR A BETTER

CoRE Rating	Safety	Reparability	Functionality
5-Star	Life Safe	Loss <5%	Occupiable Immediately Functional < 72 hours
4-Star	Life Safe	Loss <10%	Occupiable Immediately Functional < 1 month
3-star	Life Safe	Loss <20%	Occupiable < 1 month Functional < 6 months
Certified	Life Safe	Not estimated	Not estimated
Not Certified	Life Safety Hazard	Not estimated	Not estimated

DAMAGE ANALYSIS

NONLINEAR ANALYSIS SURVEY

The American Concrete Insitute Awards CSI: The Charles S. Whitney Medal

"For 30 years of development of world-class computer applications for analysis and design of structures that have changed and modernized structural engineering practice to a level never envisioned just a few decades ago."

- American Concrete Institute Board of Directors, Spring 2011

-